Энергоемкость топлив
Важнейшей характеристикой топлива является его энергоемкость, или теплота сгорания.
Под энергоемкостью (или теплотой сгорания) следует понимать количество теплоты, выделившейся при полном сгорании единицы массы или объема топлива и замеренной при постоянных давлении и температуре (обычно при 25 °С).
В технике пользуются значением низшей теплоты сгорания 1 кг (весовой) или 1 л (объемной) топлива. Низшая теплота сгорания топлива (расчетная) получается уменьшением значения высшей теплоты сгорания (экспериментальной) на количество тепла, затраченного для испарения некоторых продуктов сгорания, которые при нормальной температуре являются жидкостями. В основном — это вода, которая выводится из двигателя с продуктами сгорания в парообразном состоянии. При этом исходят из того, что тепло образования водяных паров теряется безвозвратно.
В том случае, когда среди продуктов сгорания топлива не оказывается соединений, конденсирующихся при нормальной температуре, например при сжигании СО в СО2, высшая и низшая теплоты сгорания равны.
Для работы современных карбюраторных, дизельных и ракетных двигателей важно знать также теплоту сгорания рабочей смеси, состоящей из горючего и окислителя, в количестве, достаточном для полного сгорания горючего. При этом наибольшая теплота сгорания будет у рабочей .смеси, в которой стехиометрическое соотношение топливо : окислитель ? равно 1.
Значение низшей теплоты сгорания рабочих смесей, состоящих из паров углеводородов с воздухом, приближается к 667— 674 ккал/кг.
Углеводородные топлива характеризуются высокой теплотой сгорания. Продуктами их полного сгорания являются, главным образом, двуокись углерода и вода. Лишь водород, бериллий и бор имеют большие теплоты сгорания, чем углеводороды. Однако при их использовании в качестве топлив возникают весьма сложные проблемы, которые здесь не рассматриваются. По эксплуатационным свойствам углеводороды как топлива отличаются значительными преимуществами.
Теплоту сгорания определяют сжиганием навески топлива в калориметрической бомбе, заполненной кислородом под давлением. Метод этот сложен, и для его осуществления требуются специальные условия.
Для определения теплоты сгорания при помощи расчетов широко пользуются эмпирическими формулами, точность которых составляет ±2—3%.
В основу эмпирических расчетных формул, составленных различными авторами, положены следующие данные.
1. Элементарный состав топлива. В этом случае исходят из того, что теплота сгорания топлива равна сумме теплот сгорания отдельных элементов его составляющих.
2. Количество кислорода (воздуха), необходимого для сгорания топлива. В основу эмпирических формул положено количество кислорода, необходимое для полного сгорания элементов, составляющих топливо. Наибольшей точностью из формул этого типа отличается формула Коновалова:
Qн = 3050 К
где Qн — низшая теплота сгорания топлива, ккал/кг; К — количество кислорода, необходимого для сгорания единицы массы топлива, рассчитываемое по формуле:
где С, Н, О — содержание углерода, водорода и кислорода в топливе, вес. %.
3. Теплота образования. Эмпирические формулы основаны на законе Гесса, из которого следует, что теплота сгорания топлива соответствует разности между теплотой образования сжигаемого топлива и суммой теплот образования конечных продуктов его сгорания (воды, двуокиси углерода и др.).
4. Физико-химические характеристики топлива. Для углеводородных жидких топлив, состоящих в основном из двух элементов—углерода и водорода, устанавливается определенная зависимость между отношением этих элементов, температурой их выкипания, анилиновой точкой, плотностью, строением углеводородов и другими физико-химическими показателями, с одной стороны, и теплотой сгорания — с другой.
Для углеводородных топлив, имеющих плотность от 0,510 до 0,990, весовая теплота сгорания может быть определена с точностью до 3—5% (для фракций алканового основания до 1 — 1,5%) по формулам Крагоэ:
где ?—плотность топлива при 15°С; Qв — высшая теплота сгорания, ккал/кг; Он — низшая теплота сгорания, ккал/кг.
Установлено, что при использовании этой формулы наименьшая погрешность составляет 40 ккал/кг; для смесси ароматических углеводородов с алканами наибольшая погрешность достигает 400—530 ккал/кг.
Лаврентьев предложил эмпирическую формулу для расчета низшей весовой теплоты сгорания по значению показателя преломления:
Для товарных реактивных топлив максимальное отклонение вычисленных данных, определенных экспериментально, составляет ±95 ккал/кг при среднем отклонении ±1,4 ккал/кг. Неудовлетворительные результаты получаются для узких нефтяных фракций, индивидуальных углеводородов, особенно ароматических углеводородов, для которых величина отклонения превосходит 400 ккал/кг.
Более точные результаты (отклонение ±20—25 ккал/кг), в том числе для ароматических углеводородов, дает формула, в которой используется показатель преломления и анилиновая точка:
где tA — анилиновая точка, °С.
Для среднедистиллятных нефтяных топлив можно достаточно точно рассчитать низшую весовую теплоту сгорания, зная содержание водорода, по формуле:
где Н — содержание водорода, вес. %.
Многие авторы считают, что наибольшая точность достигается при использовании расчетных формул, в которых представлена зависимость между теплотой сгорания, плотностью и анилиновой точкой среднедистиллятных топлив. Результаты расчета при использовании такой зависимости приняты во всех спецификациях США и других стран на реактивные топлива наравне со значениями, определенными экспериментально. Для керосинов отклонения от экспериментальных данных составляют 12— 14 ккал/кг, максимальные отклонения ± 45 ккал/кг. Небольшое содержание олефинов в керосинах существенно не влияет на результаты. Для алкилатов и индивидуальных углеводородов, кипящих в пределах керосиновых фракций, этот метод мало пригоден.
В спецификациях на реактивные топлива приводится коэффициент теплопроводности, представляющий собой произведение плотности, выраженной в °АРI (АSТМ D 287-55), и анилиновой точки в °F (АSТМ D 611-55Т), изменяющейся с теплотой сгорания топлива по линейной зависимости. В результате проверки этого метода на многочисленных образцах реактивных топлив нашей страны была предложена формула:
где К — коэффициент теплотворности топлива, численно равный произведению плотности топлива в °АРI и анилиновой точки в °F. Плотность определяется при 15,6 °С по ГОСТ 3900—47, а анилиновая точка — методом равных объемов (ОСТ 17872 М. И. 20К-40). Для получения плотности в °АРI, а анилиновой точки в °F пользуются переводными таблицами, приведенными в работах.
При использовании этой формулы можно получить результаты с точностью до 0,12% и максимальным отклонением 0,43% для нефтепродуктов плотностью ?5.1615.6 =0,8448—0,7585 (36— 55°АРI), имеющих анилиновую точку 51—78,3 °С (124—173°F) и коэффициенты теплотворности в пределах от 4414 до 8969.
Некоторая ошибка получается при наличии в топливе серы. Так, при 1 % серы значение теплоты сгорания для керосина может быть завышено приблизительно на 60 ккал/кг. Поэтому для расчета низшей теплоты сгорания предлагается формула, учитывающая содержание серы:
где Qн —теплота сгорания топлива, содержащего серу, ккал/кг;
Qн — теплота сгорания, рассчитанная для топлива по анилиновой точке и плотности без учета содержания серы, ккал/кг; %S— содержание серы в топливе, вес. %.
Зная плотность ?15.615.6 и вязкость топлива (в сст) при 37,8 °С, по номограмме (рис. 18) можно определить анилиновую точку в °С, а затем перевести в °F. Отклонения для керосинов от данных, полученных стандартным методом, не превышают ± 2%.
Ниже приведены коэффициенты теплотворности и значения низшей весовой теплоты сгорания для различных реактивных топлив, рассчитанные по формуле.
Для упрощения расчетов предложены номограммы, составленные на основании зависимости между физико-химическими и энергетическими характеристиками нефтяных фракций. Ниже в качестве примера представлена одна из подобных номограмм,
построенная на основе зависимости между плотностью, молекулярным весом, псевдокритическим давлением, анилиновой точкой, средней температурой кипения, теплотой испарения и высшей теплотой сгорания для нефтяных фракций (рис. 19).
Зная две какие либо характеристики из названных, можно по номограмме определить остальные. При работе с номограммой среднюю температуру кипения фракции можно принять равной температуре выкипания 50 объемн. % этой фракции в условиях стандартной разгонки.
Поскольку на номограмме приведены значения высшей теплоты сгорания, значение низшей теплоты сгорания можно рассчитать по формуле:
где К — содержание в топливе воды, вес. %.
Отклонения данных, полученных по номограмме, от фактических данных составляют 1%.
На рис. 20 приведена номограмма зависимости между низшей объемной теплотой сгорания, плотностью, вязкостью и средней температурой выкипания дизельных топлив.
По такой номограмме при помощи известных характеристик можно легко определить объемную теплоту сгорания дизельных топлив.
Теплота сгорания зависит от элементарного состава углеводородов топлива, что подтверждается следующими данными:
Весовая теплота сгорания водорода в 3,5 раза больше весовой теплоты сгорания углерода. Чем выше содержание водорода, тем выше теплота сгорания углеводородного топлива.
Для алканов среднедистиллятных фракций содержание углерода изменяется незначительно — в пределах 84—85%, для цикланов эта величина постоянна и составляет приблизительно 85,75%, для ароматических углеводородов она изменяется в широких пределах — от 91 до 87,5% и зависит от длины боковых цепей.
Весовые теплоты сгорания топлива изменяются в соответствии с содержанием углерода: для алканов и цикланов незначительно, а для ароматических углеводородов с числом углеродных атомов от 6 до 20 — до 700 ккал (рис. 21). Плотность ?420 углеводородов, составляющих товарные топлива и выкипающих в пределах 80—300°С, изменяется следующим образом:
Плотность в пределах одного класса углеводородов изменяется значительно. Она определяется не только молекулярным весом, но и структурой углеводородов. Вследствие этого объемные теплоты сгорания углеводородов существенно различаются.
Для углеводородов промышленных фракций, однотипных по строению и выкипающих в пределах 100—300°С, разница между максимальной и минимальной величинами весовой теплоты сгорания составляет от 30 до 350 ккал/кг, объемной— от 30 до 1100 ккол/л. Особенно велика разница объемной теплоты сгорания у цикланов — 700—1100 ккал/л (табл. 19).
Объемную теплоту сгорания можно значительно увеличить, одновременно сохраняя на достаточно высоком уровне весовую теплоту сгорания, вовлечением в состав топлив цикланов определенного строения.
Нефтяные топлива характеризуются теплотой сгорания, близкой к верхнему возможному пределу. Однако для дальнейшего увеличения теплоты сгорания углеводородных топлив остаются некоторые резервы. Все больше синтезируется, а также выделяется из нефти углеводородов такого строения, теплоты сгорания (весовые и объемные) которых существенно превышают теплоты сгорания товарных нефтяных фракций. На основе таких углеводородов предлагаются новые композиции высокоэнергетических топлив, столь необходимых для реактивных и ракетных двигателей.
Применение топлива с повышенной теплотой сгорания для карбюраторных и дизельных двигателей приведет к снижению его удельного расхода (поскольку теплота сгорания рабочей смеси должна быть постоянной); к уменьшению объема топливных баков при том же радиусе действия машин; к некоторому изменению сечения жиклеров в соответствии с количеством поступающего топлива. Мощность карбюраторных и дизельных двигателей не зависит от теплоты сгорания топлива и, следовательно, остается неизменной.
Для реактивных и ракетных двигателей, в которых сила тяги создается только за счет сил реакции газов, вытекающих из сопла, теплота сгорания топлива играет большую роль. Сила тяги воздушно-реактивного двигателя представляет равнодействующую сил воздушного и газового потоков, оказывающую влияние на элементы 'Проточной части и наружной поверхности двигателя. Она прямо пропорциональна количеству воздуха, проходящего через реактивный двигатель, и скорости истечения газов через его сопло. Весовой расход топлива составляет 1,5—2% от весового расхода воздуха. Топливо, сгорая, нагревает воздух и тем самым увеличивает его кинетическую энергию, расходуемую на полезную работу и компенсацию потерь. Поэтому чем выше теплота сгорания топлива, тем большую полезную работу сможет дать двигатель.
Увеличение теплоты сгорания топлива приведет к увеличению объема газов, проходящих через двигатель, и, следовательно, к увеличению скорости их истечения, что повысит к. п. д. двигателя. Авиационные топлива, выделяющие при сгорании большее количество тепла, позволяют увеличить дальность полета или грузоподъемность самолета. О зависимости между энергоемкостью авиационного реактивного топлива и дальностью полета самолета можно судить по формуле Брегэ:
где К — дальность оолета; Qн — весовая низшая теплота сгорания топлива; ? — суммарный к. п. д. двигателя; L/D — отношение подъемной силы к лобовому сопротивлению; W0 — вес самолета при старте; Wf — вес залитого в баки самолета топлива.
Из приведенной формулы следует, что дальность полета самолета изменяется (прямо пропорционально теплоте, выделяющейся при сгорании топлива. Таким образом, при постоянном весе топлива повышение его весовой теплоты сгорания позволит в реактивном двигателе не только достичь преимуществ, указанных для карбюраторных двигателей, но и увеличить мощность двигателя, скорость м дальность полета самолета или уменьшить удельный расход топлива.
Увеличение объемной теплоты сгорания топлива, связанное с обязательным возрастанием его плотности, даст преимущества лишь в том случае, если прирост теплоты сгорания превзойдет потери энергии, которую необходимо будет дополнительно затратить вследствие увеличения полетного веса самолета, загруженного таким же объемом топлива, но имеющего большую плотность. Критерием энергетической оценки топлива будет являться удельная теплота сгорания загруженного топлива, отнесенная к единице полетного веса летательного аппарата.
Весьма желательно равенство значений весовой и объемной теплоты сгорания топлив; к такому равенству можно приблизиться, увеличивая плотность углеводородной смеси до единицы.
Выполнить это условие пока трудно, хотя методом синтеза удается получить насыщенные углеводороды, плотность которых превышает 0,9 г/см3.
На рис. 22 показано влияние теплоты сгорания и плотности топлива на дальность полета самолета при различных высотах. Как видно из рисунка, энергетические преимущества топлива с повышенной плотностью наиболее ощутимы при большой скорости полета (2,5—4 Маха).
При необходимости увеличения дальности полета топливо с большей весовой теплотой сгорания в сравнимых условиях будет обладать (преимуществом перед топливом с большей объемной теплотой сгорания (большей плотностью). На дальних расстояниях при использовании последних будет расходоваться дополнительная энергия на их перевозку.
Для ракетного двигателя значение топлива с высокой теплотой сгорания еще более возрастает. Высота взлета ракетного двигателя увеличивается во столько раз, во сколько увеличивается теплота сгорания топлива. Таким образом, при использовании для ракетных двигателей топлив с более высокой теплотой сгорания достигаются преимущества, указанные для воздушно-ракетных двигателей, и увеличивается высота взлета ракеты.
Исследователи стремятся получить такое углеводородное топливо, которое возможно полнее отвечало бы требованиям реактивных сверхзвуковых и тем более ракетных двигателей. Такие топлива должны характеризоваться высокой весовой и объемной теплотой сгорания при минимальном различии их значений. Кроме того, углеводороды, составляющие топлива, должны обладать удовлетворительными низкотемпературными свойствами, высокой химической стабильностью при повышенных температурах, пределами кипения и др. Предпринимаются попытки получения таких топлив не только на основе соответствующих нефтяных фракций и однотипных по химическому строению групп углеводородов, но и на основе сложного синтеза индивидуальных соединений, хотя этот путь намного дороже. В табл. 20 приведены сведения о некоторых синтезированных для этой цели в США индивидуальных углеводородах по данным патентной литературы, опубликованной в основном в 1964 г.
Как видно из данных табл. 20, осуществлен синтез углеводородов сложных и интересных структур. Исследование их свойств свидетельствует об известных возможностях, обнаруженных на этом пути. Большинство углеводородов являются би- и трицикланами с очень высокой плотностью, а следовательно, высокой объемной теплотой сгорания.
По-видимому, циклановые углеводороды в целом отвечают требованиям, предъявляемым к топливу, ;В большей мере, чем углеводороды иного строения. Можно предвидеть, что изоалка- новые углеводороды определенного строения также окажутся благоприятным материалом для этой цели.
Поскольку для реактивных топлив сверхзвуковых самолетов наиболее подходящим и доступным в настоящее время материалом являются циклановые углеводороды, характеризующиеся достаточно высокой весовой теплотой сгорания и плотностью, значения низшей весовой теплоты сгорания цикланов различного строения при 25°С (в ккал/кг).
Наряду с цикланами большое внимание заслуживают с точки зрения использования в качестве высокоэнергетических топлив изоалкановые углеводороды, характеризующиеся максимальным содержанием водорода, а следовательно, максимальной весовой теплотой сгорания. Сложность заключается в 'Подборе таких структур изоалканов, низкотемпературная характеристика которых (температура застывания, кристаллизации, вязкость и ее изменение с температурой) была бы удовлетворительной, а плотность максимальной.
К числу таких углеводородов относятся, по-видимому, алканы гребенчатого строения с компактно и симметрично расположенными короткими боковыми цепями, имеющими один или два углеродных атома. Предстоит изыскать наиболее экономически целесообразный путь получения алканов,' отвечающих такому строению.
Известна еще одна группа углеводородов, энергоемкость которых складывается не только из теплот сгорания элементов, но и из энергии, выделяющейся при разрушении их кратных связей и напряженных циклов. К ним относятся производные ацетилена и углеводороды, в структуре которых имеются циклопропановые кольца. Энергия ацетиленовой связи —С=С— составляет около
195 ккал/моль, т. е. более чем в два раза больше энергии связи (84 ккалімоль). Однако реализовать эту дополнительную энергию весьма сложно из-за склонности ацетиленовых углеводородов полимеризоваться по месту ненасыщенных связей. При сгорании циклопропана и его гомологов также выделяется дополнительная энергия, которая в отличие от энергии ацетиленовой связи может быть использована. В табл. 21 приведены теплоты образования и сгорания некоторых углеводородов с простыми и кратными связями, а также напряженными циклами.
Как видно из данных табл. 21, циклопропан и ацетиленовые углеводороды характеризуются весьма высокими теплотами сгорания, намного превышающими теплоты сгорания насыщенных углеводородов с таким же числом углеродных атомов в молекуле, но не имеющих столь напряженных связей. Наибольшую теплоту сгорания имеет циклопропан. Гомологи циклопропана характеризуются несколько меньшей теплотой сгорания. Так, низшая весовая теплота сгорания фенилциклопропана равна 10 280 ккал/кг, циклогексилциклопропана 10 610 ккал/кг. Гомологи циклопропана имеют следующие весьма важные преимущества по сравнению с ацетиленами: хорошую стабильность при хранении, низкотемпературные свойства, невзрываемость и др.
Очевидно, ди- и трициклопропаны будут представлять собой топлива, отличающиеся наибольшей энергоемкостью среди углеводородов иного строения, в том числе алканов.
В табл. 22 приводятся значения удельных импульсов для ракетных топливных систем при использовании в качестве горючего ацетилена или циклопропана.
Циклопропилуглеводороды могут быть получены в процессе довольно сложного синтеза, проходящего в несколько стадий. Ацетиленовые углеводороды могут быть получены в известных промышленных процессах.
В отличие от циклопропанов, которые являются довольно стабильными, ацетилены нуждаются в специальных стабилизирующих добавках и с ними надо обращаться, как со взрывчатыми веществами.
Таким образом, возможность получения углеводородов с более высокой энергоемкостью нельзя считать исчерпанной.
|