Судовые двигатели

Измерение эффективной мощности двигателя
Индекс материала
Измерение эффективной мощности двигателя
Страница 2
Все страницы

Измерение эффективной мощности двигателя

Важнейшим объектом измерения при испытании двигателя является его эффективная мощность. Для изме­рения крутящего момента, а следовательно, и эффективной мощности двигателя при стендовых испы­таниях применяют тормозные динамометры или просто тормо­зы. С помощью тормозов осуще­ствляется поглощение работы, совершаемой двигателем, и од­новременное измерение среднего значения крутящего момента.

Таким образом, тормозы могут быть применимы при установив­шемся режиме работы двигате­ля. Работа двигателя, при осуще­ствлении нагрузки его тормозом, тратится на преодоление гидравлического сопротивления в гидравлических тормозах и сил электромагнитного взаи­модействия в электрических тормозах. Наибольшее применение в стендо­вых испытаниях двигателей имеют гидравлические тормозы.

Схема гидравлического тормоза

На рис. 181 показана принципиальная схема гидравлического тормоза. На валу тормоза 2, который соединяется с валом двигателя, имеются диски 1, вращающиеся вместе с ним. Корпус тормоза 3, опираясь на подшипники 5, может поворачиваться относительно оси вала тормоза. Полость корпуса тормоза заполняется водой. При вращении вала тормоза 2 вода, увлекаемая дисками 1, стремится повернуть корпус тормоза в том же направлении, а мо­мент РL, создаваемый грузом Р, подвешенным на рычаге 4, противодей­ствует этому.

Таким образом, при установившемся режиме работы двигателя тор­мозной момент, направленный против вращения ротора тормоза, уравнове­шивает равный ему, но противоположно направленный крутящий момент, приложенный к валу тормоза. Совершаемая при этом работа превращается в теплоту, которая нагревает воду, протекающую через тормоз. Груз 6 уравновешивает вес рычага 4.

На рис. 182 приведена конструкция гидравлического тормоза с регу­лированием величины тормозного момента величиной наполнения корпуса его водой. Вода подводится в этом тормозе по трубе 2 и гибкому шлангу 5,а отводится по трубе 3. Груз подвешивается к рычагу 6 на тарелку 1, вес рычага уравновешивается грузом 4. Наряду с указанным рычажным изме­рением тормозного момента применяется измерение и с помощью маятни­ковых весов.

Как известно, эффективная мощность двигателя выражается через кру­тящий момент М и число оборотов вала его n следующей формулой:

Гидравлический тормоз

Если градуировка шкалы (весом) тормоза отнесена к плечу, равному 716,2 мм, то формула для подсчета эффективной мощности двигателя при­нимает вид

где Р — показание тормоза в кГ.

Каждый тормоз имеет свою характеристику — зависимость между мощ­ностью, поглощаемой тормозом, и числом оборотов ротора. Начальный _ участок этой характеристики при максимальном заполнении тормоза прибли­жается к кубической параболе. Верхняя точка участка характеристики соот­ветствует максимальному значению крутящего момента. Кроме того, на характеристике указываются точки, соответствующие максимальной мощ­ности, поглощаемой тормозом, и максимально допустимому числу оборотов ротора его.

Тормозы с регулируемым слоем воды более просты по конструкции, но имеют непостоянство величины тормозного момента, возникающее в ре­зультате самопроизвольных колебаний толщины слоя воды. Поэтому за показания такого тормоза надо принимать среднее значение из нескольких следующих один за другим отсчетов. Гидравлические тормозы, правильно подобранные и находящиеся в хорошем состоянии, позволяют производить измерение крутящего момента вала двигателя с относительной ошибкой, не превышающей 1—2%.

Для измерения эффективной мощности двигателя, установленного на судне, применяются торсионные динамометры (торсиометры), с помощью которых производится измерение угла закручивания вала, передающего крутящий момент двигателя. Зависимость между углом закручивания вала, т. е. угла относительного поворота двух сечений вала, взятых на расстоянии l между ними, и крутящим моментом, приложенным к этому валу, выражается формулой:

Величина относительного смещения фланцев муфт торсиометра в зави­симости от типа его измеряется механическим, оптическим или электри­ческим путем. Существует большое разнообразие конструкций торсиомет­ров, но все они обладают громоздкостью и малой точностью измерения, а по­тому в практике все они нашли весьма малое применение. Наиболее перcпективными являются торсиометры, основанные на применении электри­ческих методов измерения угла закручивания вала. Из их числа следует назвать электротензометрический торсиометр и фотоэлектронный торсио­метр. Электротензометрический торсиометр основан на измерении мгновен­ных значений крутящего момента и числе оборотов вала с помощью метода проволочной тензометрии. Тензомост составляется из четырех датчиков, наклеиваемых на поверхность вала под углом 45° к образующей. Деформа­ция поверхностных волокон вала при его скручивании, а следовательно, и деформация проволоки датчиков вызывает разбаланс моста. Напряжение с измерительной диагонали моста подается на усилитель и регистрируется после усиления с помощью осциллографа или самописца. В результате измерения определяются касательные напряжения на поверхности вала по формуле

Схемы наклейки проволочных датчиков на вал и включения их в цепь усилителя показаны на рис. 183, а и б.

Схема наклейки проволочных датчиком на вал включение их в цепь усилителя

Фотоэлектронный торсиометр основан на измерении сдвига фаз между сигналами двух датчиков, закрепленных в двух сечениях вала. Специальная электронная схема позволяет преобразовать сигналы от датчиков в прямо­угольные импульсы. Средняя величина тока в цепи регистрирующего при­бора пропорциональна сдвигу фаз токов датчиков, а следовательно, пропор­циональна углу закручивания вала.

Схема торсиометра

Рассмотрим схему установки торсиометра ЛИВТа. На вал 3 с помощью стяжных болтов устанавливаются растры 1 (рис. 184). Они выполняются разъемными, что позволяет монтировать их на валу без разборки валопровода. К поверхности вала растры прижимаются базовыми ножами 2.

Малая поверхность опоры уменьшает погрешность определения базы прибора до ± 0,5 мм. Края растров имеют прямоугольные радиальные про­рези шириной 1 мм, через которые луч света от осветителя 4 проходит к фо­тосопротивлению 5.

При вращении вала прорези растра через определенные промежутки времени пропускают луч света на фотосопротивление, которое в эти моменты генерирует фототок. Таким образом возникают импульсы тока. Нетрудно видеть, что ширина проре­зей и расстояние между ними являются основными параметрами прибора, вли­яющими на точность изме­рения. Действительно, с уменьшением расстояния между прорезями возра­стает число импульсов, что обеспечивает более точное определение угла сдвига фаз.

Кроме того, на точ­ность измерения влияет скорость кромки прорези. Чем больше скорость, тем быстрее будет открываться источник света и тем быстрее во времени возрастает фототок от нуля до своего максимума, иначе, получаем более крутой фронт импульса. Последнее необ­ходимо потому, что триггер, входящий в электрическую схему, срабатывает при достаточной крутизне переднего фронта импульса.

Высота прорезей принимается примерно в 2 раза больше высоты рабо­чего поля фотосопротивления, что исключает влияние радиальных колеба­ний вала на работу прибора. В корпусе осветителя помещена лампочка мощ­ностью 15 вт. Объектив от микроскопа служит для получения отчетливого изображения нити накаливания на поле фотосопротивления. Возникающие импульсы тока не являются строго прямоугольными и не имеют достаточно большую амплитуду для работы измерительного прибора. Поэтому предва­рительно эти импульсы усиливаются и преобразуются в прямоугольные импульсы с достаточной крутизной переднего фронта. Эту функцию выпол­няет усилительно-формирующий блок на полупроводниках. Для нормальной работы триггера сформированные импульсы дифференцируются, в результате чего получаем импульсы с малой длительностью. Эти импульсы поступают на вход триггера. Триггер — это импульсное устройство, имеющее два устойчивых состояния равновесия, которое может переходить от одного состояния равновесия в другое с помощью внешнего воздействия (импульса). Причем при переходе триггера (срабатывании) из одного состояния в другое изменяется величина напряжения на коллекторах полупроводников. При подаче импульсов от двух датчиков в общей цепи триггера в зависимости от фазового сдвига между импульсами течет различный ток, который воздейст­вует на измерительный прибор, вызывая отклонение стрелки последнего. По отклонению стрелки определяют угол закручивания вала.

Этот тип торсиометра позволяет измерить в широком диапазоне скоро­стей крутящий момент с допустимой погрешностью.

Вследствие того что в эксплуатации судовых дизелей до сих пор еще не получил широкого применения прибор для замера крутящего момента греб­ного вала, определение эффективной мощности производится по косвенным

показателям. В качестве косвенных показателей мощности, развиваемой двигателем, приняты его часовой расход топлива и температура отработав­ших газов. Основано это на том, что эффективная мощность и крутящий мо­мент двигателя являются функцией расхода топлива, количественная оцен­ка которой определяется следующими вы­ражениями:

На основании стендовых испытаний головного двигателя указанные зависимости при различных числах оборотов вала представляются графи­чески, как это показано на рис. 185 и 186.

Зависимость расхода топлива от мощности двигателя

Зависимость рахода топлива от крутящего момента двигателя

Как следует из предыдущего, температура отработавших газов (за вы­пускным коллектором) зависит от мощности двигателя, количественную оцен­ку которой, также по данным стендовых испытаний, представляют графи­чески (рис. 187).

Зависимость температуры выпускных газов от крутящего момента двигателя

При испытании судна и его силовой установки данные графические зависимости используются как паспортные характеристики, по которым и определяют мощность, развиваемую двигателем. Для этого в испытываемый период работы судна измеряют часовой расход топлива и число оборотов ко­ленчатого вала двигателя, работающего на гребной винт. Откладывая по оси ординат значения Gт на графике (см. рис. 185) или Gт/n на графике (см. рис. 186), на оси абсцисс найдем искомыe Ne или Ме. В качестве допол­нения и проверки эффективную мощность двигателя определяют и по замеренной температуре отработавших газов tг, для чего пользуются графиком, приведенным на рис. 187.

Если испытываемый двигатель на судне по своему техническому состоя­нию не отличается от двигателя, испытанного на стенде завода, то неточность определения эффективной мощности его будет определяться относительными погрешностями при измерении расхода топлива и числа оборотов вала. Таким образом, при определении мощности двигателя на судне по косвенным пока­зателям, если метеорологические условия мало отличны от условий на стенде завода, относительная ошибка составляет 2—5%. При значительных небла­гоприятных отклонениях метеорологических условий на судне от стендовых (низкое давление воздуха во впускном коллекторе р0 и высокая температура воздуха Т0) и повышенном сопротивлении выпускного тракта двигателя (повышенное давление в выпускном коллекторе рг) относительная ошибка в определении эффективной мощности двигателя может достигать 10—12%. В случае же сниженных показателей технического состояния двигателя, что может иметь место после продолжительного периода эксплуатации его, ошибка в определении эффективной мощности рассматриваемым методом может достичь более значительной величины, т. е. является недопустимой.

Вследствие износа рабочей втулки цилиндра, поршневых колец, дета­лей форсунки и топливного насоса продолжительность процесса сгорания топлива в цилиндре дизеля возрастает, что приводит к повышенным тепло­вым потерям, а следовательно, к снижению индикаторного к. п. д. Для развития необходимой мощности при этих условиях двигатель потребляет больше топлива, т. е. работаете большим удельным расходом топлива. Имея в виду, что целью контрольных теплотехнических испытаний силовой уста­новки теплохода является определение показателей технического состояния главного двигателя (в том числе определение и удельного расхода топлива), можно сделать вывод, что рассматриваемый метод определения эффективной мощности двигателя по расходу топлива и по температуре отработавших газов, при таких испытаниях является неприемлемым. Необходима поправка замеренной мощности. Ниже излагается метод, предложенный нами, исправ­ления значения замеренной мощности двигателя по расходу топлива.

Указанный метод основан на взаимосвязи коэффициента избытка возду­ха при горении топлива в цилиндре двигателя ? (суммарного коэффициента, определяемого по составу отработавших газов), среднего эффективного дав­ления ре и удельного эффективного расхода топлива ge.

Как было установлено ранее, эта взаимосвязь выражается

Обозначения в этой формуле были введены ранее.

Для всех дизельных сортов топлива значение L0 мало изменяется и мо­жет быть принято равным L0 = 0,49 моль/кг.

Подставляя значение L0, будем иметь

При изменении технического состояния двигателя (износ цилиндра, поршневых колец, деталей топливной системы) зависимость, выраженная приведенной выше формулой, сохраняется, только значения величин, вхо­дящих в это выражение, будут другими.

Допустим, что для какого-либо рассматриваемого режима работы двига­теля на заводском стенде (мощность Nе и число оборотов вала n об/мин) были замерены величины ?, рe, ge, ?н, р0 и Т0, а при работе этого же двигателя на судне непосредственно на гребной винт эти величины равны ?', рe', ge', ?н', р0' и Т0. Тогда можно написать

Для одного и того же двигателя при различном его техническом состоя­нии с одинаковой нагрузкой и при одинаковом числе оборотов вала коэф­фициенты наполнения могут быть приняты равными, если, конечно, фазы распределения не изменены, а потому

Если испытания судна происходят в нормальных условиях плавания (наличие необходимого запаса воды под килем судна при отсутствии силь­ного встречного ветра и т. п.) и элементы гребного винта соответствуют мощ­ности и числу оборотов, замеренных на стенде завода, то можно принять, что pе' = рe, и соответственно находим

Полученное выражение позволяет произвести корректировку удельного эффективного расхода топлива с учетом изменения технического состояния двигателя и метеорологических условий. Здесь коэффициент избытка воз­духа при горении ? и ?’ определяется при одном и том же режиме работы двигателя как на стенде завода, так и на судне по анализу отработавших газов. Ошибка при определении а может быть допущена порядка 1,5—3% и соответственно неточность корректировки удельного расхода топлива будет в допустимых пределах.

В качестве проверки правильности определения ge' может быть произ­веден подсчет мощности двигателя Nе' как по расходу топлива, так и по значению среднего эффективного давления ре' = ре при данном числе обо­ротов двигателя n:

Здесь С — постоянная двигателя.

В том случае, когда испытываемое судно имеет гребной винт, не соот­ветствующий стендовым характеристикам двигателя, или же имеется повы­шенное сопротивление движению судна, будем иметь неравенство ре' ? ре.

Для корректировки мощности в этом случае, замеренной по расходу топлива, допустим в первом приближении, что ge' = ge. При этом условии находим

Соответственно искомая эффективная мощность двигателя при работе на гребной винт с числом оборотов вала n будет равна

В качестве проверки ранее принятого допущения ge' = ge удельный расход топлива может быть определен по часовому расходу топлива:

В случае несовпадения значений удельных расходов топлива (найден­ного по часовому расходу топлива на судне ge' и ge) следует задаться новой величиной ge' между значениями ge и ранее найденным.

При новом ge' вновь определяется pe' и соответственно мощность Nе'. Такой перерасчет производится до тех пор, пока величина удельного эф­фективного расхода топлива, принимаемого для определения ре', не совпа­дет с величиной ge', определяемой по часовому расходу топлива на судне. В качестве примера определим удельный эффективный расход топлива ge' и эффективную мощность Nе' двигателя 6ЧР 27,5/36 (6С275Л), установлен­ного на буксире, с учетом технического состояния двигателя и метеорологи­ческих условий.

При испытании двигателя на судне были замерены:

часовой расход топлива Gт = 77 кг;

число оборотов вала двигателя n = 550 об/мин;

температура воздуха, поступающего во впускной коллектор двигателя,

T0' = 310° К;

давление наружного воздуха — 755 мм. рт. ст.;

коэффициент избытка воздуха при горении ?' = 1,95.

Согласно стендовым испытаниям номинальная мощность двигателя при n = 550 об/мин равна Nе = 400 л. с. На эту мощность и рассчитан гребной винт. При режиме работы двигателя на испытательном стенде было установ­лено:

Удельный расход топлива ge = 0,177 кг/э. л. с.ч.

Коэффициент избытка воздуха при горении ? = 2,2.

Температура воздуха Т0 = 298°К.

Давление воздуха р0 = 755 мм рт. ст.

Эффективная мощность двигателя без корректировки удельного рас­хода топлива согласно замеренному часовому расходу топлива будет равна

Действительный удельный расход топлива при работе двигателя на судне в период испытаний

Действительная эффективная мощность, развиваемая двигателем на судне,

что совпадает со стендовыми данными.

Предлагаемый метод исправления (корректировки) замеряемой эф­фективной мощности двигателя на судне по расходу топлива позволяет зна­чительно расширить область определения мощности по косвенным показа­телям.

Метод определения эффективной мощности по косвенным показателям, с корректировкой соответственно изменению коэффициента избытка возду­ха при сгорании топлива в цилиндре испытываемого двигателя, может быть вполне применим и при теплодинамометрических испытаниях судна, про­водимых с целью определения технического состояния двигателя.

Очень важно, что этим методом можно пользоваться в повседневной работе теплопартий пароходств.