Из уравнения механической характеристики (97) вытекает, что регулирование скорости вращения асинхронных электродвигателей можно осуществить:
изменением частоты питающего тока;
изменением числа «ар полюсов обмотки статора;
введением дополнительных сопротивлений в цепь обмотки ротора.
Первые два способа используются для регулирования скорости вращения электродвигателей с короткозамкнутым ротором, а последний — электродвигателей с фазным ротором (с контактными кольцами).
Регулирование скорости вращения изменением частоты питающего тока используется очень редко, так как этот способ применим лишь в случае, когда электродвигатель питается от отдельного генератора. В этом случае для регулирования скорости необходимо менять скорость вращения питающего генератора в такой же пропорции, е какой должна меняться скорость регулируемого электродвигателя. Бели же электродвигатель питается от сети трехфазного тока, то осуществить регулирование его скорости изменением частоты невозможно. На практике регулирование скорости изменением частоты применяется лишь в. гребных электрических установках переменного тока, в которых мощные гребные электродвигатели получают питание от отдельных генераторов и поэтому частоту питающего тока можно регулировать произвольно.
Наиболее часто на практике применяется второй способ, позволяющий достаточно просто осуществлять ступенчатое регулирование скорости вращения асинхронных электродвигателей с короткозамкнутым ротором. Если имеется возможность изменять число пар полюсов обмотки статора [см. формулу (80)] то, следовательно, имеется возможность ступенчатого регулирования скорости вращения электродвигателя, так как число пар полюсов может быть равно 1, 2, 3 и т. д. Электродвигатели, допускающие переключение числа пар полюсов, должны иметь в пазах статора либо несколько независимых обмоток, либо одну обмотку со специальным переключающим устройством. Отечественная промышленность выпускает двух-, трех- и четырех- скороетные электродвигатели, используемые :в основном на морском транспорте и на некоторых кранах. Когда числа полюсов значительно отличаются друг от друга, двух скор осиные электродвигатели изготовляются с двумя независимыми обмотками. Одна, например, может быть выполнена на 2р = 2, а вторая на 2р = 8 полюсов. Тогда при подключении к сети первой обмотки магнитное поле статора будет вращаться со скоростью n1 = 60·50 / 1 = 3000 об /мин, а при подключении к сети второй обмотки — со скоростью n1 = 60·50 / 4 = 750 об /мин. Соответствующим образом будет изменяться при этом и скорость вращения ротора n2 = n1 (1—s).
Часто в пазы статора двухскоростного электродвигателя закладывают одну обмотку, но выполняют ее так, чтобы можно было включать ее при необходимости треугольником (рис. 49, а) и двойной звездой (рис. 49, б). При включении такой обмотки треугольником число полюсов равно 2р = 2а, а при включении двойной звездой 2р = а (где а — любое целое число), т. е. при переходе от треугольника к двойной звезде число пар полюсов статорной обмотки уменьшается вдвое, а скорость электродвигателя возрастает вдвое.
Регулирование переключением числа пар полюсов применяется только для электродвигателя с короткозамкнутым ротором, потому что у электродвигателей с фазным ротором одно
временно с переключением обмотки статора требуется переключать и обмотку ротора, что усложняет конструкцию электродвигателя и переключающего устройства. Данный способ регулирования скорости отличается высокой экономичностью, но он не лишен и недостатков. В частности, регулирование скорости происходит не плавно, а скачками, требуется довольно сложное переключающее устройство, в особенности при числе скоростей большем двух; при переходе с одной скорости на другую разрывается цепь статора, при этом неизбежны толчки тока и момента, коэффициент мощности при низших скоростях ниже, чем при высших из-за увеличения рассеяния магнитного потока.
Регулирование скорости введением дополнительных сопротивлений в цепь ротора возможно только у электродвигателей с фазным ротором. Согласно уравнению (97), при введении различных активных сопротивлений в цепь ротора жесткость характеристик изменяется (рис. 50), т. е. при одной и той же нагрузке скорость электродвигателя будет различной. Очевидно, чем выше величина дополнительного сопротивления, тем мягче искусственная характеристика и тем ниже скорость электродвигателя.
Допустим электродвигатель работает с установившейся скоростью n1 на естественной характеристике а в точке 1, развития некоторый вращающий момент М1 = Мc. При введении в цепь ротора некоторого сопротивления R1 электродвигатель перейдет на работу по характеристике b, уравнение которой
Так как в момент включения сопротивления скорость электродвигателя практически не изменится, переход с характеристики а на характеристику b произойдет по горизонтали 1—2, причем вращающий момент электродвигателя снизится до М2, который меньше момента сопротивления механизма М, поэтому скорость электродвигателя будет падать, а скольжение возрастать. При возрастании скольжения момент, согласно выражению (92), увеличивается до тех пор, пока момент электродвигателя вновь не станет равным моменту сопротивления механизма, после чего наступит равновесие моментов и двигатель будет вращаться с новой установившейся скоростью n3 (точка 3).
При необходимости дополнительно может быть включено сопротивление R2. Тогда скорость электродвигателя снизится до величины n5. При отключении сопротивлений скорость электродвигателя будет возрастать, при этом переход с одной характеристики на другую происходит в обратном порядке, как показано на рис. 50.
Последний способ позволяет получить широкий диапазон скоростей, но является крайне неэкономичным, так как при увеличении активного сопротивления цепи ротора растут потери энергии в электродвигателе, а значит уменьшается его к. п. д. Сами регулировочные реостаты, особенно для мощных электродвигателей, получаются громоздкими и выделяют много тепла.
Необходимо также иметь в виду, что большинство электродвигателей в настоящее время выполняется с самовентиляцией.
Вследствие этого при понижении скорости вращения охлаждение ухудшается и электродвигатель не может развивать номинальный вращающий момент.
|